[−][src]Struct nom::types::CompleteByteSlice
Holds a complete byte array, for which the at_eof
method always returns true
This means that this input type will completely avoid nom's streaming features
and Incomplete
results.
Methods from Deref<Target = &'a [u8]>
pub fn len(&self) -> usize
1.0.0[src]
pub fn len(&self) -> usize
pub fn is_empty(&self) -> bool
1.0.0[src]
pub fn is_empty(&self) -> bool
pub fn first(&self) -> Option<&T>
1.0.0[src]
pub fn first(&self) -> Option<&T>
Returns the first element of the slice, or None
if it is empty.
Examples
let v = [10, 40, 30]; assert_eq!(Some(&10), v.first()); let w: &[i32] = &[]; assert_eq!(None, w.first());
pub fn split_first(&self) -> Option<(&T, &[T])>
1.5.0[src]
pub fn split_first(&self) -> Option<(&T, &[T])>
Returns the first and all the rest of the elements of the slice, or None
if it is empty.
Examples
let x = &[0, 1, 2]; if let Some((first, elements)) = x.split_first() { assert_eq!(first, &0); assert_eq!(elements, &[1, 2]); }
pub fn split_last(&self) -> Option<(&T, &[T])>
1.5.0[src]
pub fn split_last(&self) -> Option<(&T, &[T])>
Returns the last and all the rest of the elements of the slice, or None
if it is empty.
Examples
let x = &[0, 1, 2]; if let Some((last, elements)) = x.split_last() { assert_eq!(last, &2); assert_eq!(elements, &[0, 1]); }
pub fn last(&self) -> Option<&T>
1.0.0[src]
pub fn last(&self) -> Option<&T>
Returns the last element of the slice, or None
if it is empty.
Examples
let v = [10, 40, 30]; assert_eq!(Some(&30), v.last()); let w: &[i32] = &[]; assert_eq!(None, w.last());
pub fn get<I>(&self, index: I) -> Option<&<I as SliceIndex<[T]>>::Output> where
I: SliceIndex<[T]>,
1.0.0[src]
pub fn get<I>(&self, index: I) -> Option<&<I as SliceIndex<[T]>>::Output> where
I: SliceIndex<[T]>,
Returns a reference to an element or subslice depending on the type of index.
- If given a position, returns a reference to the element at that
position or
None
if out of bounds. - If given a range, returns the subslice corresponding to that range,
or
None
if out of bounds.
Examples
let v = [10, 40, 30]; assert_eq!(Some(&40), v.get(1)); assert_eq!(Some(&[10, 40][..]), v.get(0..2)); assert_eq!(None, v.get(3)); assert_eq!(None, v.get(0..4));
pub unsafe fn get_unchecked<I>(
&self,
index: I
) -> &<I as SliceIndex<[T]>>::Output where
I: SliceIndex<[T]>,
1.0.0[src]
pub unsafe fn get_unchecked<I>(
&self,
index: I
) -> &<I as SliceIndex<[T]>>::Output where
I: SliceIndex<[T]>,
Returns a reference to an element or subslice, without doing bounds checking.
This is generally not recommended, use with caution! For a safe
alternative see get
.
Examples
let x = &[1, 2, 4]; unsafe { assert_eq!(x.get_unchecked(1), &2); }
pub const fn as_ptr(&self) -> *const T
1.0.0[src]
pub const fn as_ptr(&self) -> *const T
Returns a raw pointer to the slice's buffer.
The caller must ensure that the slice outlives the pointer this function returns, or else it will end up pointing to garbage.
Modifying the container referenced by this slice may cause its buffer to be reallocated, which would also make any pointers to it invalid.
Examples
let x = &[1, 2, 4]; let x_ptr = x.as_ptr(); unsafe { for i in 0..x.len() { assert_eq!(x.get_unchecked(i), &*x_ptr.add(i)); } }
ⓘImportant traits for Iter<'a, T>pub fn iter(&self) -> Iter<T>
1.0.0[src]
pub fn iter(&self) -> Iter<T>
Returns an iterator over the slice.
Examples
let x = &[1, 2, 4]; let mut iterator = x.iter(); assert_eq!(iterator.next(), Some(&1)); assert_eq!(iterator.next(), Some(&2)); assert_eq!(iterator.next(), Some(&4)); assert_eq!(iterator.next(), None);
ⓘImportant traits for Windows<'a, T>pub fn windows(&self, size: usize) -> Windows<T>
1.0.0[src]
pub fn windows(&self, size: usize) -> Windows<T>
Returns an iterator over all contiguous windows of length
size
. The windows overlap. If the slice is shorter than
size
, the iterator returns no values.
Panics
Panics if size
is 0.
Examples
let slice = ['r', 'u', 's', 't']; let mut iter = slice.windows(2); assert_eq!(iter.next().unwrap(), &['r', 'u']); assert_eq!(iter.next().unwrap(), &['u', 's']); assert_eq!(iter.next().unwrap(), &['s', 't']); assert!(iter.next().is_none());
If the slice is shorter than size
:
let slice = ['f', 'o', 'o']; let mut iter = slice.windows(4); assert!(iter.next().is_none());
ⓘImportant traits for Chunks<'a, T>pub fn chunks(&self, chunk_size: usize) -> Chunks<T>
1.0.0[src]
pub fn chunks(&self, chunk_size: usize) -> Chunks<T>
Returns an iterator over chunk_size
elements of the slice at a time, starting at the
beginning of the slice.
The chunks are slices and do not overlap. If chunk_size
does not divide the length of the
slice, then the last chunk will not have length chunk_size
.
See chunks_exact
for a variant of this iterator that returns chunks of always exactly
chunk_size
elements, and rchunks
for the same iterator but starting at the end of the
slice of the slice.
Panics
Panics if chunk_size
is 0.
Examples
let slice = ['l', 'o', 'r', 'e', 'm']; let mut iter = slice.chunks(2); assert_eq!(iter.next().unwrap(), &['l', 'o']); assert_eq!(iter.next().unwrap(), &['r', 'e']); assert_eq!(iter.next().unwrap(), &['m']); assert!(iter.next().is_none());
ⓘImportant traits for ChunksExact<'a, T>pub fn chunks_exact(&self, chunk_size: usize) -> ChunksExact<T>
1.31.0[src]
pub fn chunks_exact(&self, chunk_size: usize) -> ChunksExact<T>
Returns an iterator over chunk_size
elements of the slice at a time, starting at the
beginning of the slice.
The chunks are slices and do not overlap. If chunk_size
does not divide the length of the
slice, then the last up to chunk_size-1
elements will be omitted and can be retrieved
from the remainder
function of the iterator.
Due to each chunk having exactly chunk_size
elements, the compiler can often optimize the
resulting code better than in the case of chunks
.
See chunks
for a variant of this iterator that also returns the remainder as a smaller
chunk, and rchunks_exact
for the same iterator but starting at the end of the slice of
the slice.
Panics
Panics if chunk_size
is 0.
Examples
let slice = ['l', 'o', 'r', 'e', 'm']; let mut iter = slice.chunks_exact(2); assert_eq!(iter.next().unwrap(), &['l', 'o']); assert_eq!(iter.next().unwrap(), &['r', 'e']); assert!(iter.next().is_none()); assert_eq!(iter.remainder(), &['m']);
ⓘImportant traits for RChunks<'a, T>pub fn rchunks(&self, chunk_size: usize) -> RChunks<T>
1.31.0[src]
pub fn rchunks(&self, chunk_size: usize) -> RChunks<T>
Returns an iterator over chunk_size
elements of the slice at a time, starting at the end
of the slice.
The chunks are slices and do not overlap. If chunk_size
does not divide the length of the
slice, then the last chunk will not have length chunk_size
.
See rchunks_exact
for a variant of this iterator that returns chunks of always exactly
chunk_size
elements, and chunks
for the same iterator but starting at the beginning
of the slice.
Panics
Panics if chunk_size
is 0.
Examples
let slice = ['l', 'o', 'r', 'e', 'm']; let mut iter = slice.rchunks(2); assert_eq!(iter.next().unwrap(), &['e', 'm']); assert_eq!(iter.next().unwrap(), &['o', 'r']); assert_eq!(iter.next().unwrap(), &['l']); assert!(iter.next().is_none());
ⓘImportant traits for RChunksExact<'a, T>pub fn rchunks_exact(&self, chunk_size: usize) -> RChunksExact<T>
1.31.0[src]
pub fn rchunks_exact(&self, chunk_size: usize) -> RChunksExact<T>
Returns an iterator over chunk_size
elements of the slice at a time, starting at the
beginning of the slice.
The chunks are slices and do not overlap. If chunk_size
does not divide the length of the
slice, then the last up to chunk_size-1
elements will be omitted and can be retrieved
from the remainder
function of the iterator.
Due to each chunk having exactly chunk_size
elements, the compiler can often optimize the
resulting code better than in the case of [chunks
].
See rchunks
for a variant of this iterator that also returns the remainder as a smaller
chunk, and chunks_exact
for the same iterator but starting at the beginning of the
slice of the slice.
Panics
Panics if chunk_size
is 0.
Examples
let slice = ['l', 'o', 'r', 'e', 'm']; let mut iter = slice.rchunks_exact(2); assert_eq!(iter.next().unwrap(), &['e', 'm']); assert_eq!(iter.next().unwrap(), &['o', 'r']); assert!(iter.next().is_none()); assert_eq!(iter.remainder(), &['l']);
pub fn split_at(&self, mid: usize) -> (&[T], &[T])
1.0.0[src]
pub fn split_at(&self, mid: usize) -> (&[T], &[T])
Divides one slice into two at an index.
The first will contain all indices from [0, mid)
(excluding
the index mid
itself) and the second will contain all
indices from [mid, len)
(excluding the index len
itself).
Panics
Panics if mid > len
.
Examples
let v = [1, 2, 3, 4, 5, 6]; { let (left, right) = v.split_at(0); assert!(left == []); assert!(right == [1, 2, 3, 4, 5, 6]); } { let (left, right) = v.split_at(2); assert!(left == [1, 2]); assert!(right == [3, 4, 5, 6]); } { let (left, right) = v.split_at(6); assert!(left == [1, 2, 3, 4, 5, 6]); assert!(right == []); }
ⓘImportant traits for Split<'a, T, P>pub fn split<F>(&self, pred: F) -> Split<T, F> where
F: FnMut(&T) -> bool,
1.0.0[src]
pub fn split<F>(&self, pred: F) -> Split<T, F> where
F: FnMut(&T) -> bool,
Returns an iterator over subslices separated by elements that match
pred
. The matched element is not contained in the subslices.
Examples
let slice = [10, 40, 33, 20]; let mut iter = slice.split(|num| num % 3 == 0); assert_eq!(iter.next().unwrap(), &[10, 40]); assert_eq!(iter.next().unwrap(), &[20]); assert!(iter.next().is_none());
If the first element is matched, an empty slice will be the first item returned by the iterator. Similarly, if the last element in the slice is matched, an empty slice will be the last item returned by the iterator:
let slice = [10, 40, 33]; let mut iter = slice.split(|num| num % 3 == 0); assert_eq!(iter.next().unwrap(), &[10, 40]); assert_eq!(iter.next().unwrap(), &[]); assert!(iter.next().is_none());
If two matched elements are directly adjacent, an empty slice will be present between them:
let slice = [10, 6, 33, 20]; let mut iter = slice.split(|num| num % 3 == 0); assert_eq!(iter.next().unwrap(), &[10]); assert_eq!(iter.next().unwrap(), &[]); assert_eq!(iter.next().unwrap(), &[20]); assert!(iter.next().is_none());
ⓘImportant traits for RSplit<'a, T, P>pub fn rsplit<F>(&self, pred: F) -> RSplit<T, F> where
F: FnMut(&T) -> bool,
1.27.0[src]
pub fn rsplit<F>(&self, pred: F) -> RSplit<T, F> where
F: FnMut(&T) -> bool,
Returns an iterator over subslices separated by elements that match
pred
, starting at the end of the slice and working backwards.
The matched element is not contained in the subslices.
Examples
let slice = [11, 22, 33, 0, 44, 55]; let mut iter = slice.rsplit(|num| *num == 0); assert_eq!(iter.next().unwrap(), &[44, 55]); assert_eq!(iter.next().unwrap(), &[11, 22, 33]); assert_eq!(iter.next(), None);
As with split()
, if the first or last element is matched, an empty
slice will be the first (or last) item returned by the iterator.
let v = &[0, 1, 1, 2, 3, 5, 8]; let mut it = v.rsplit(|n| *n % 2 == 0); assert_eq!(it.next().unwrap(), &[]); assert_eq!(it.next().unwrap(), &[3, 5]); assert_eq!(it.next().unwrap(), &[1, 1]); assert_eq!(it.next().unwrap(), &[]); assert_eq!(it.next(), None);
ⓘImportant traits for SplitN<'a, T, P>pub fn splitn<F>(&self, n: usize, pred: F) -> SplitN<T, F> where
F: FnMut(&T) -> bool,
1.0.0[src]
pub fn splitn<F>(&self, n: usize, pred: F) -> SplitN<T, F> where
F: FnMut(&T) -> bool,
Returns an iterator over subslices separated by elements that match
pred
, limited to returning at most n
items. The matched element is
not contained in the subslices.
The last element returned, if any, will contain the remainder of the slice.
Examples
Print the slice split once by numbers divisible by 3 (i.e. [10, 40]
,
[20, 60, 50]
):
let v = [10, 40, 30, 20, 60, 50]; for group in v.splitn(2, |num| *num % 3 == 0) { println!("{:?}", group); }
ⓘImportant traits for RSplitN<'a, T, P>pub fn rsplitn<F>(&self, n: usize, pred: F) -> RSplitN<T, F> where
F: FnMut(&T) -> bool,
1.0.0[src]
pub fn rsplitn<F>(&self, n: usize, pred: F) -> RSplitN<T, F> where
F: FnMut(&T) -> bool,
Returns an iterator over subslices separated by elements that match
pred
limited to returning at most n
items. This starts at the end of
the slice and works backwards. The matched element is not contained in
the subslices.
The last element returned, if any, will contain the remainder of the slice.
Examples
Print the slice split once, starting from the end, by numbers divisible
by 3 (i.e. [50]
, [10, 40, 30, 20]
):
let v = [10, 40, 30, 20, 60, 50]; for group in v.rsplitn(2, |num| *num % 3 == 0) { println!("{:?}", group); }
pub fn contains(&self, x: &T) -> bool where
T: PartialEq<T>,
1.0.0[src]
pub fn contains(&self, x: &T) -> bool where
T: PartialEq<T>,
Returns true
if the slice contains an element with the given value.
Examples
let v = [10, 40, 30]; assert!(v.contains(&30)); assert!(!v.contains(&50));
pub fn starts_with(&self, needle: &[T]) -> bool where
T: PartialEq<T>,
1.0.0[src]
pub fn starts_with(&self, needle: &[T]) -> bool where
T: PartialEq<T>,
Returns true
if needle
is a prefix of the slice.
Examples
let v = [10, 40, 30]; assert!(v.starts_with(&[10])); assert!(v.starts_with(&[10, 40])); assert!(!v.starts_with(&[50])); assert!(!v.starts_with(&[10, 50]));
Always returns true
if needle
is an empty slice:
let v = &[10, 40, 30]; assert!(v.starts_with(&[])); let v: &[u8] = &[]; assert!(v.starts_with(&[]));
pub fn ends_with(&self, needle: &[T]) -> bool where
T: PartialEq<T>,
1.0.0[src]
pub fn ends_with(&self, needle: &[T]) -> bool where
T: PartialEq<T>,
Returns true
if needle
is a suffix of the slice.
Examples
let v = [10, 40, 30]; assert!(v.ends_with(&[30])); assert!(v.ends_with(&[40, 30])); assert!(!v.ends_with(&[50])); assert!(!v.ends_with(&[50, 30]));
Always returns true
if needle
is an empty slice:
let v = &[10, 40, 30]; assert!(v.ends_with(&[])); let v: &[u8] = &[]; assert!(v.ends_with(&[]));
pub fn binary_search(&self, x: &T) -> Result<usize, usize> where
T: Ord,
1.0.0[src]
pub fn binary_search(&self, x: &T) -> Result<usize, usize> where
T: Ord,
Binary searches this sorted slice for a given element.
If the value is found then [Result::Ok
] is returned, containing the
index of the matching element. If there are multiple matches, then any
one of the matches could be returned. If the value is not found then
[Result::Err
] is returned, containing the index where a matching
element could be inserted while maintaining sorted order.
Examples
Looks up a series of four elements. The first is found, with a
uniquely determined position; the second and third are not
found; the fourth could match any position in [1, 4]
.
let s = [0, 1, 1, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55]; assert_eq!(s.binary_search(&13), Ok(9)); assert_eq!(s.binary_search(&4), Err(7)); assert_eq!(s.binary_search(&100), Err(13)); let r = s.binary_search(&1); assert!(match r { Ok(1..=4) => true, _ => false, });
pub fn binary_search_by<'a, F>(&'a self, f: F) -> Result<usize, usize> where
F: FnMut(&'a T) -> Ordering,
1.0.0[src]
pub fn binary_search_by<'a, F>(&'a self, f: F) -> Result<usize, usize> where
F: FnMut(&'a T) -> Ordering,
Binary searches this sorted slice with a comparator function.
The comparator function should implement an order consistent
with the sort order of the underlying slice, returning an
order code that indicates whether its argument is Less
,
Equal
or Greater
the desired target.
If the value is found then [Result::Ok
] is returned, containing the
index of the matching element. If there are multiple matches, then any
one of the matches could be returned. If the value is not found then
[Result::Err
] is returned, containing the index where a matching
element could be inserted while maintaining sorted order.
Examples
Looks up a series of four elements. The first is found, with a
uniquely determined position; the second and third are not
found; the fourth could match any position in [1, 4]
.
let s = [0, 1, 1, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55]; let seek = 13; assert_eq!(s.binary_search_by(|probe| probe.cmp(&seek)), Ok(9)); let seek = 4; assert_eq!(s.binary_search_by(|probe| probe.cmp(&seek)), Err(7)); let seek = 100; assert_eq!(s.binary_search_by(|probe| probe.cmp(&seek)), Err(13)); let seek = 1; let r = s.binary_search_by(|probe| probe.cmp(&seek)); assert!(match r { Ok(1..=4) => true, _ => false, });
pub fn binary_search_by_key<'a, B, F>(
&'a self,
b: &B,
f: F
) -> Result<usize, usize> where
B: Ord,
F: FnMut(&'a T) -> B,
1.10.0[src]
pub fn binary_search_by_key<'a, B, F>(
&'a self,
b: &B,
f: F
) -> Result<usize, usize> where
B: Ord,
F: FnMut(&'a T) -> B,
Binary searches this sorted slice with a key extraction function.
Assumes that the slice is sorted by the key, for instance with
sort_by_key
using the same key extraction function.
If the value is found then [Result::Ok
] is returned, containing the
index of the matching element. If there are multiple matches, then any
one of the matches could be returned. If the value is not found then
[Result::Err
] is returned, containing the index where a matching
element could be inserted while maintaining sorted order.
Examples
Looks up a series of four elements in a slice of pairs sorted by
their second elements. The first is found, with a uniquely
determined position; the second and third are not found; the
fourth could match any position in [1, 4]
.
let s = [(0, 0), (2, 1), (4, 1), (5, 1), (3, 1), (1, 2), (2, 3), (4, 5), (5, 8), (3, 13), (1, 21), (2, 34), (4, 55)]; assert_eq!(s.binary_search_by_key(&13, |&(a,b)| b), Ok(9)); assert_eq!(s.binary_search_by_key(&4, |&(a,b)| b), Err(7)); assert_eq!(s.binary_search_by_key(&100, |&(a,b)| b), Err(13)); let r = s.binary_search_by_key(&1, |&(a,b)| b); assert!(match r { Ok(1..=4) => true, _ => false, });
pub unsafe fn align_to<U>(&self) -> (&[T], &[U], &[T])
1.30.0[src]
pub unsafe fn align_to<U>(&self) -> (&[T], &[U], &[T])
Transmute the slice to a slice of another type, ensuring alignment of the types is maintained.
This method splits the slice into three distinct slices: prefix, correctly aligned middle slice of a new type, and the suffix slice. The method does a best effort to make the middle slice the greatest length possible for a given type and input slice, but only your algorithm's performance should depend on that, not its correctness.
This method has no purpose when either input element T
or output element U
are
zero-sized and will return the original slice without splitting anything.
Unsafety
This method is essentially a transmute
with respect to the elements in the returned
middle slice, so all the usual caveats pertaining to transmute::<T, U>
also apply here.
Examples
Basic usage:
unsafe { let bytes: [u8; 7] = [1, 2, 3, 4, 5, 6, 7]; let (prefix, shorts, suffix) = bytes.align_to::<u16>(); // less_efficient_algorithm_for_bytes(prefix); // more_efficient_algorithm_for_aligned_shorts(shorts); // less_efficient_algorithm_for_bytes(suffix); }
pub fn is_ascii(&self) -> bool
1.23.0[src]
pub fn is_ascii(&self) -> bool
Checks if all bytes in this slice are within the ASCII range.
pub fn eq_ignore_ascii_case(&self, other: &[u8]) -> bool
1.23.0[src]
pub fn eq_ignore_ascii_case(&self, other: &[u8]) -> bool
Checks that two slices are an ASCII case-insensitive match.
Same as to_ascii_lowercase(a) == to_ascii_lowercase(b)
,
but without allocating and copying temporaries.
pub fn to_vec(&self) -> Vec<T> where
T: Clone,
1.0.0[src]
pub fn to_vec(&self) -> Vec<T> where
T: Clone,
Copies self
into a new Vec
.
Examples
let s = [10, 40, 30]; let x = s.to_vec(); // Here, `s` and `x` can be modified independently.
pub fn repeat(&self, n: usize) -> Vec<T> where
T: Copy,
[src]
pub fn repeat(&self, n: usize) -> Vec<T> where
T: Copy,
🔬 This is a nightly-only experimental API. (repeat_generic_slice
)
it's on str, why not on slice?
Creates a vector by repeating a slice n
times.
Panics
This function will panic if the capacity would overflow.
Examples
Basic usage:
#![feature(repeat_generic_slice)] fn main() { assert_eq!([1, 2].repeat(3), vec![1, 2, 1, 2, 1, 2]); }
A panic upon overflow:
#![feature(repeat_generic_slice)] fn main() { // this will panic at runtime b"0123456789abcdef".repeat(usize::max_value()); }
pub fn to_ascii_uppercase(&self) -> Vec<u8>
1.23.0[src]
pub fn to_ascii_uppercase(&self) -> Vec<u8>
Returns a vector containing a copy of this slice where each byte is mapped to its ASCII upper case equivalent.
ASCII letters 'a' to 'z' are mapped to 'A' to 'Z', but non-ASCII letters are unchanged.
To uppercase the value in-place, use make_ascii_uppercase
.
pub fn to_ascii_lowercase(&self) -> Vec<u8>
1.23.0[src]
pub fn to_ascii_lowercase(&self) -> Vec<u8>
Returns a vector containing a copy of this slice where each byte is mapped to its ASCII lower case equivalent.
ASCII letters 'A' to 'Z' are mapped to 'a' to 'z', but non-ASCII letters are unchanged.
To lowercase the value in-place, use make_ascii_lowercase
.
Trait Implementations
impl<'a> HexDisplay for CompleteByteSlice<'a>
[src]
impl<'a> HexDisplay for CompleteByteSlice<'a>
fn to_hex(&self, chunk_size: usize) -> String
[src]
fn to_hex(&self, chunk_size: usize) -> String
fn to_hex_from(&self, chunk_size: usize, from: usize) -> String
[src]
fn to_hex_from(&self, chunk_size: usize, from: usize) -> String
impl<'a> InputLength for CompleteByteSlice<'a>
[src]
impl<'a> InputLength for CompleteByteSlice<'a>
impl<'a> Offset for CompleteByteSlice<'a>
[src]
impl<'a> Offset for CompleteByteSlice<'a>
fn offset(&self, second: &CompleteByteSlice<'a>) -> usize
[src]
fn offset(&self, second: &CompleteByteSlice<'a>) -> usize
impl<'a> AsBytes for CompleteByteSlice<'a>
[src]
impl<'a> AsBytes for CompleteByteSlice<'a>
impl<'a> InputIter for CompleteByteSlice<'a>
[src]
impl<'a> InputIter for CompleteByteSlice<'a>
type Item = u8
type RawItem = u8
type Iter = Enumerate<Self::IterElem>
type IterElem = Map<Iter<'a, Self::Item>, fn(_: &u8) -> u8>
fn iter_indices(&self) -> Self::Iter
[src]
fn iter_indices(&self) -> Self::Iter
fn iter_elements(&self) -> Self::IterElem
[src]
fn iter_elements(&self) -> Self::IterElem
fn position<P>(&self, predicate: P) -> Option<usize> where
P: Fn(Self::RawItem) -> bool,
[src]
fn position<P>(&self, predicate: P) -> Option<usize> where
P: Fn(Self::RawItem) -> bool,
fn slice_index(&self, count: usize) -> Option<usize>
[src]
fn slice_index(&self, count: usize) -> Option<usize>
impl<'a> InputTake for CompleteByteSlice<'a>
[src]
impl<'a> InputTake for CompleteByteSlice<'a>
impl<'a> InputTakeAtPosition for CompleteByteSlice<'a>
[src]
impl<'a> InputTakeAtPosition for CompleteByteSlice<'a>
type Item = u8
fn split_at_position<P>(&self, predicate: P) -> IResult<Self, Self, u32> where
P: Fn(Self::Item) -> bool,
[src]
fn split_at_position<P>(&self, predicate: P) -> IResult<Self, Self, u32> where
P: Fn(Self::Item) -> bool,
fn split_at_position1<P>(
&self,
predicate: P,
e: ErrorKind<u32>
) -> IResult<Self, Self, u32> where
P: Fn(Self::Item) -> bool,
[src]
fn split_at_position1<P>(
&self,
predicate: P,
e: ErrorKind<u32>
) -> IResult<Self, Self, u32> where
P: Fn(Self::Item) -> bool,
impl<'a, 'b> Compare<&'b [u8]> for CompleteByteSlice<'a>
[src]
impl<'a, 'b> Compare<&'b [u8]> for CompleteByteSlice<'a>
fn compare(&self, t: &'b [u8]) -> CompareResult
[src]
fn compare(&self, t: &'b [u8]) -> CompareResult
fn compare_no_case(&self, t: &'b [u8]) -> CompareResult
[src]
fn compare_no_case(&self, t: &'b [u8]) -> CompareResult
impl<'a, 'b> Compare<&'b str> for CompleteByteSlice<'a>
[src]
impl<'a, 'b> Compare<&'b str> for CompleteByteSlice<'a>
fn compare(&self, t: &'b str) -> CompareResult
[src]
fn compare(&self, t: &'b str) -> CompareResult
fn compare_no_case(&self, t: &'b str) -> CompareResult
[src]
fn compare_no_case(&self, t: &'b str) -> CompareResult
impl<'a> FindToken<char> for CompleteByteSlice<'a>
[src]
impl<'a> FindToken<char> for CompleteByteSlice<'a>
fn find_token(&self, token: char) -> bool
[src]
fn find_token(&self, token: char) -> bool
impl<'a> FindToken<u8> for CompleteByteSlice<'a>
[src]
impl<'a> FindToken<u8> for CompleteByteSlice<'a>
fn find_token(&self, token: u8) -> bool
[src]
fn find_token(&self, token: u8) -> bool
impl<'a, 'b> FindToken<&'a u8> for CompleteByteSlice<'b>
[src]
impl<'a, 'b> FindToken<&'a u8> for CompleteByteSlice<'b>
fn find_token(&self, token: &u8) -> bool
[src]
fn find_token(&self, token: &u8) -> bool
impl<'a, 'b> FindSubstring<&'b [u8]> for CompleteByteSlice<'a>
[src]
impl<'a, 'b> FindSubstring<&'b [u8]> for CompleteByteSlice<'a>
impl<'a, 'b> FindSubstring<&'b str> for CompleteByteSlice<'a>
[src]
impl<'a, 'b> FindSubstring<&'b str> for CompleteByteSlice<'a>
fn find_substring(&self, substr: &'b str) -> Option<usize>
[src]
fn find_substring(&self, substr: &'b str) -> Option<usize>
impl<'a, R: FromStr> ParseTo<R> for CompleteByteSlice<'a>
[src]
impl<'a, R: FromStr> ParseTo<R> for CompleteByteSlice<'a>
impl<'a> Slice<Range<usize>> for CompleteByteSlice<'a>
[src]
impl<'a> Slice<Range<usize>> for CompleteByteSlice<'a>
impl<'a> Slice<RangeTo<usize>> for CompleteByteSlice<'a>
[src]
impl<'a> Slice<RangeTo<usize>> for CompleteByteSlice<'a>
impl<'a> Slice<RangeFrom<usize>> for CompleteByteSlice<'a>
[src]
impl<'a> Slice<RangeFrom<usize>> for CompleteByteSlice<'a>
impl<'a> Slice<RangeFull> for CompleteByteSlice<'a>
[src]
impl<'a> Slice<RangeFull> for CompleteByteSlice<'a>
impl<'a> AtEof for CompleteByteSlice<'a>
[src]
impl<'a> AtEof for CompleteByteSlice<'a>
impl<'a> PartialEq<CompleteByteSlice<'a>> for CompleteByteSlice<'a>
[src]
impl<'a> PartialEq<CompleteByteSlice<'a>> for CompleteByteSlice<'a>
fn eq(&self, other: &CompleteByteSlice<'a>) -> bool
[src]
fn eq(&self, other: &CompleteByteSlice<'a>) -> bool
fn ne(&self, other: &CompleteByteSlice<'a>) -> bool
[src]
fn ne(&self, other: &CompleteByteSlice<'a>) -> bool
impl<'a> From<&'a [u8]> for CompleteByteSlice<'a>
[src]
impl<'a> From<&'a [u8]> for CompleteByteSlice<'a>
impl<'a, 'b> From<&'b &'a [u8]> for CompleteByteSlice<'a>
[src]
impl<'a, 'b> From<&'b &'a [u8]> for CompleteByteSlice<'a>
impl<'a> Clone for CompleteByteSlice<'a>
[src]
impl<'a> Clone for CompleteByteSlice<'a>
fn clone(&self) -> CompleteByteSlice<'a>
[src]
fn clone(&self) -> CompleteByteSlice<'a>
fn clone_from(&mut self, source: &Self)
1.0.0[src]
fn clone_from(&mut self, source: &Self)
Performs copy-assignment from source
. Read more
impl<'a> Copy for CompleteByteSlice<'a>
[src]
impl<'a> Copy for CompleteByteSlice<'a>
impl<'a> Eq for CompleteByteSlice<'a>
[src]
impl<'a> Eq for CompleteByteSlice<'a>
impl<'a> Debug for CompleteByteSlice<'a>
[src]
impl<'a> Debug for CompleteByteSlice<'a>
impl<'a> Hash for CompleteByteSlice<'a>
[src]
impl<'a> Hash for CompleteByteSlice<'a>
fn hash<__H: Hasher>(&self, state: &mut __H)
[src]
fn hash<__H: Hasher>(&self, state: &mut __H)
fn hash_slice<H>(data: &[Self], state: &mut H) where
H: Hasher,
1.3.0[src]
fn hash_slice<H>(data: &[Self], state: &mut H) where
H: Hasher,
Feeds a slice of this type into the given [Hasher
]. Read more
impl<'a> Deref for CompleteByteSlice<'a>
[src]
impl<'a> Deref for CompleteByteSlice<'a>
Auto Trait Implementations
impl<'a> Send for CompleteByteSlice<'a>
impl<'a> Send for CompleteByteSlice<'a>
impl<'a> Sync for CompleteByteSlice<'a>
impl<'a> Sync for CompleteByteSlice<'a>
Blanket Implementations
impl<T, U> Into for T where
U: From<T>,
[src]
impl<T, U> Into for T where
U: From<T>,
impl<T> ToOwned for T where
T: Clone,
[src]
impl<T> ToOwned for T where
T: Clone,
impl<T> From for T
[src]
impl<T> From for T
impl<T, U> TryFrom for T where
T: From<U>,
[src]
impl<T, U> TryFrom for T where
T: From<U>,
type Error = !
try_from
)The type returned in the event of a conversion error.
fn try_from(value: U) -> Result<T, <T as TryFrom<U>>::Error>
[src]
fn try_from(value: U) -> Result<T, <T as TryFrom<U>>::Error>
impl<T> Borrow for T where
T: ?Sized,
[src]
impl<T> Borrow for T where
T: ?Sized,
impl<T> Any for T where
T: 'static + ?Sized,
[src]
impl<T> Any for T where
T: 'static + ?Sized,
fn get_type_id(&self) -> TypeId
[src]
fn get_type_id(&self) -> TypeId
impl<T, U> TryInto for T where
U: TryFrom<T>,
[src]
impl<T, U> TryInto for T where
U: TryFrom<T>,
type Error = <U as TryFrom<T>>::Error
try_from
)The type returned in the event of a conversion error.
fn try_into(self) -> Result<U, <U as TryFrom<T>>::Error>
[src]
fn try_into(self) -> Result<U, <U as TryFrom<T>>::Error>
impl<T> BorrowMut for T where
T: ?Sized,
[src]
impl<T> BorrowMut for T where
T: ?Sized,
ⓘImportant traits for &'_ mut Ifn borrow_mut(&mut self) -> &mut T
[src]
fn borrow_mut(&mut self) -> &mut T